
PNNL - 13850

HOSTDESIGNER

USER'S MANUAL

Version 2.02

October 2004

DR. BENJAMIN P. HAY AND DR. TIMOTHY K. FIRMAN

MOLECULAR INTERACTIONS AND TRANSFORMATIONS GROUP

CHEMICAL SCIENCES DIVISION

PACIFIC NORTHWEST NATIONAL LABORATORY

PO BOX 999, RICHLAND, WASHINGTON 99352

HostDesigner Manual

2

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government nor any agency thereof, nor

Battelle Memorial Institute, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that

its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof, or Battelle Memorial

Institute. The views and opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof.

ACKNOWLEDGEMENTS

This research was funded in part by the Chemical Sciences, Office of Basic Energy

Sciences, Office of Science, U. S. Department of Energy (DOE) and in part by the
Laboratory Directed Research and Development Program, Fundamental Science Division

of the Pacific Northwest National Laboratory (PNNL). The authors express their

appreciation to Dr. J. B. Nicholas (now at Genentech, Inc.) for his considerable input in
the early design of this software, Prof. J. W. Ponder (Washington University Medical

School) for granting permission to distribute portions of the TINKER code used in the
development of the OVERLAY algorithm, Drs. T.P. Straatsma and W. deJong (PNNL)

for their assistance with writing and debugging the code, and Dr. Kevin E. Gilbert

(Serena Software) for the coding of the HDViewer utility program.

HostDesigner Manual

3

TABLE OF CONTENTS

DISCLAIMER.. 2

ACKNOWLEDGEMENTS... 2

TABLE OF CONTENTS .. 3

1.0 INTRODUCTION.. 4

2.0 DESCRIPTION OF THE ALGORITHMS ... 6

2.1 The LINKER Algorithm ... 6

2.2 The OVERLAY Algorithm... 13

2.3 The Linking Fragment LIBRARY... 15

3.0 HOW TO DRIVE HOSTDESIGNER... 24

3.1 Installation.. 24

3.2 The File Named ‘control’.. 24

3.3 The Complex Fragment Files for the LINKER mode 28

3.4 The Complex Fragment File for the OVERLAY mode................................ 31

3.5 Geometry Drives... 33

3.6 Description of the Output Files ... 40

4.0 HOW TO CITE HOSTDESIGNER IN THE LITERATURE.................................. 42

HostDesigner Manual

4

1.0 INTRODUCTION
Because the ability to successfully design effective and selective metal ion host

molecules would have a significant impact in many scientific fields, there is a large body
of research focused on understanding the nature of host-guest interactions. Fundamental
studies of the interactions between a metal ion and simple coordinating groups, such as
ether oxygens, amine nitrogens, or arenes, have elucidated geometric features that lead to
optimal binding. It has been shown that this type of information can be incorporated into
force field models to provide a rapid method of screening proposed host structures, in
other words, rank-ordering a set of hosts in terms of their binding affinity for a given
guest. It also has been demonstrated that more accurate, but more costly, screening can
be accomplished with molecular dynamics or electronic structure calculations. However,
although understanding the nature of metal-binding site interactions and screening
candidate structures are important components of ligand design, we are still missing a
vital piece to the puzzle – a way to efficiently generate new host candidates.

Simply put, host design is the process of choosing a set of binding sites and then
choosing the connecting geometric structure that ties them together. In many instances,
we have sufficient knowledge to identify the number and types of binding sites to
complement a given metal, but we need an effective method to identify how to connect
these groups together to form an integrated host molecule. At present, we can only
generate trial structures by hand with a graphical user interface, an extremely time-
consuming process. Often, it is not readily obvious which linkage structures might be
best used to connect the binding sites groups.

Drug designers have developed computational approaches to address the inverse of
this problem, that is, how to identify a molecular structure (guest) that will bind tightly
within the binding site of a protein (host). One approach involves docking fragments into
the pocket and then linking them together to yield the potential drug candidate. Software
packages that perform these operations require input of the atomic coordinates of a
protein binding site and are highly specialized to address protein–organic interactions.
Because of this, they are not applicable for the generation of molecular structures
designed for metal ion complexation. Our aim was to develop molecular design
algorithms to achieve software that is capable of identifying the best host architctures for
a specific metal ion guest. HostDesigner is the result.

The first version of the HostDesigner software, Version 1.0, was released in April
2002. The features of this software and examples of applications have been published in
(Hay, B. P.; Firman, T. K. Inorganic Chemistry, 2002, 41, 5502-5512). Since that time,
there have been significant modifications both to enhance the performance and to extend
the application of this software.

 The second version of HostDesigner, Version 2.0, contains improvements in several
major areas. While the Version 1.0 was limited to single-atom guests, Version 2.0 now
treats multi-atom guests, allowing application to a much broader range of compounds. In
Version 1.0, the input structures were defined as rigid geometries, but in Version 2.0 the

HostDesigner Manual

5

geometry of the input structures can now be varied. The sceening options within
HostDesigner have been much improved as well, with estimates for conformational and
of entropic contributions to the binding energy of potential hosts. Other improvements
include an expanded library of structures to bridge binding groups and an increase in
speed.

With the assistance of Dr. Kevin Gilbert (Serena Software) we have develped a
graphical user interface for HostDesigner named HDViewer. This utility program can be
used to create input files from imported coordinates, launch HostDesigner, and view the
output files created by HostDesigner. Further information on the HDViewer software is
available in the HDViewer User’s Manual provided in the download package.

The HostDesigner package is freeware and can be downloaded from the website
http://hostdesigner.emsl.pnl.gov. It consists of HostDesigner and HDViewer executables
(MacOSX or Windows), a linkage structure library (LIBRARY), and one additional file
needed to operate the system (CONSTANTS). In addition, several example input files
and this manual are included with the download.

HostDesigner Manual

6

2.0 DESCRIPTION OF THE ALGORITHMS
2.1 The LINKER Algorithm
2.1.1 Overview

The LINKER algorithm is used to connect three different molecular fragments
together and make a preliminary judgement on how well the resulting structure will bind
a user-defined guest. Two user–defined complex fragments are bridged by a linking
fragment, a molecular group taken from a LIBRARY file (see section 2.3). LINKER can
generate and evaluate millions of structures per minute on a desktop computer, and writes
files containing descriptions and coordinates for the most promising candidates. This
process is intended to be a first step in the design of new hosts, to be followed by more
detailed analysis of the output structures by other methods.

Host molecules are composed of groups of binding sites. Thus, any multidentate host
can be dissected into two or more structural fragments which we can designate as host
components. For example, the well known 18-crown-6 macrocycle can be broken down
into two triglyme components, three diglyme components, or six dimethylether
components. It is possible to define the structure of a complex fragment, in other words,
a piece of a host-guest complex, by combining a host component with a guest. In
constructing the complex fragment, the guest can be positioned relative to the host
component to define a complementary geometry, that is, a geometry that would give the
strongest interaction between the binding sites of the host component and the guest in an
actual complex.

The LINKER algorithm is based on the following assumptions: (1) there is an optimal
geometry for the interaction between each binding site of the host and the guest and (2)
this optimal geometry is largely independent of the other binding sites that may be
present in the host. The LINKER algorithm builds new host structures by connecting two
complex fragments to linking fragments that are taken from a library. Figure 1 shows
complex fragments for a number of common donor groups with a variety of host-guest
orientations. Although it is true that the host-guest distance will increase with increasing
coordination number, the preferred orientation of the host component with respect to the
guest remains largely invariant. Optimal angles and dihedral angles can be deduced from
examination of experimental geometries of host-guest complexes or through the careful
application of electronic structure calculations. Given a targeted coordination number,
the optimal host-guest distances can be deduced in the same manner. Thus, it is possible
to define an optimal geometry for the interaction between a guest with any host
component.

HostDesigner Manual

7

Figure 1. Examples of simple complex fragments showing optimal placement of cation and
anion guests with respect to different host components.

2.1.2 The Building Algorithm
LINKER builds new host structures by forming bonds between two complex

fragments and linking fragments. The user must provide an input file for each complex
fragment that specifies the coordinates for all the atoms, atom connectivity, and
attachment points (see Section 3.3). Attachment points are indicated by listing hydrogen
atoms that will be lost from the complex fragment and replaced with carbon atoms from
the linking fragment. The building process is illustrated in Figure 2. In this example,
two identical lithium-dimethylether complex fragments are attached to a methylene link.

Given the possibility of multiple attachment points per component structure and
multiple rotational minima about each bond formed, it is possible to generate a number of
structures with one link. With the example shown in Figure 2, there are three
attachments to each host and there are three possible dihedral angles for each bond giving
rise to a total of 81 potential structures. However, when this example is run through the
code, only the 9 structures shown in Figure 3 are retained. There are two reasons for this.
First, subsequent builds may lead to the identical structure or the mirror image of the
structure. These degenerate results are rejected. Second, in a number of cases, rotation
about the bonds leads to physically unreasonable collision or superposition of generated
host atoms (see Figure 4). When this occurs, such structures are rejected.

HostDesigner Manual

8

Figure 2. How the LINKER algorithm constructs a host structure from two complex fragments
and a linking fragment.

Figure 3. Host structures obtained by combining the three fragments shown in Figure 2. Degree
of guest superposition, given here as Li-Li distance, is used for scoring the structures (see Section
2.1.3).

HostDesigner Manual

9

Figure 4. Example of a structure rejected due to a close H--H contact.

Every time a bond is formed, the new structure is checked for unacceptably close atom
contacts between the fragments. The distance between each atom from the first fragment
and each atom from the second fragment may not fall below a limit when the pair of
atoms is separated by four or more bonds. When the pair of atoms is separated by three
or fewer bonds, the distances are not checked. Therefore, atom pairs that are allowed to
be close to one another are those connected to form the bond (atoms 5 and 6 in Figure 4),
connected through two bonds (for example, atoms 7 and 5), or connected indirectly
through three bonds (for example, atoms 7 and 4).

During a typical run, LINKER examines every possible connectivity and bond rotation
with many different link structures. In addition, the ability to vary the geometry of the
complex fragments (see Section 3.5) can increase the number of starting structures
dramatically. Therefore, it is possible to generate large numbers of structures. The
resulting hosts are prioritized and only the best structures are written to the output files
(see Section 2.1.3). The link library currently contains 11,297 structures (see Section
2.3), however the user has some control over which links will be used for building.
Searches can be limited by specifying a minimum or maximum length of the linker, the
number of rotatable bonds in the link, the valence of the bonding atoms, and the
maximum conformational energy. Sections 3.2 and 3.3 provide further detail on how to
control this application.

The types of bonds that can be formed by LINKER are limited. Version 1.0 allowed
the formation of six types of carbon-carbon bonds. These were C(alkane)-C(alkane),
C(alkane)-C(alkene), C(alkane)-C(arene), C(alkene)-C(alkene), C(alkene)-C(arene), and
C(arene)-C(arene). In Version 2.0, we have added C(alkane)-O(ether), C(alkene)-
O(ether), C(arene)-O(ether), and C(alkane)-N(amine). Bond lengths are based on the
identity of each bonding atom. To assign the dihedral angles to each bond that is formed,
the code considers both the identity and the degree of substitution of each bonding atom.
The values that are assigned are based on examination of MM3 potential energy surfaces
for rotation about 55 possible types of bonds formed by all combinations of the 10 groups
shown in Figure 5. When ether or amine atoms are defined as bonding atoms in a
complex fragment they are equivalenced with the analogous alkane group.

During the early stages of development, it was realized that it was not possible to build
a macrocyclic structure with the LINKER algorithm. The reason is illustrated in Figure
6. When two 1,3-propane diamine chelates are directly connected and the bond is rotated

HostDesigner Manual

10

to an optimal dihedral angle, the code generates a complementary host structure that
corresponds to a stable conformation of the known cyclam macrocycle. This structure
was rejected, however, because the terminal methyl groups are superimposed. This
problem led to the development of a proceedure to detect and allow the formation of
macrocyclic structures. At this time, this procedure only allows the formation of bonds
between two terminal methyl groups. The user can invoke this algorithm while running
HostDesigner in the LINKER mode (see Section 3.2 and 3.3).

Figure 5. In forming a bond, the LINKER algorithm connects two fragments and assigns
dihedral angles about the bond. To accomplish these assignments, each fragment is identified as
a member of one of the 10 classes shown above, where X = any non-hydrogen atom and R =
hydrogen or alkyl group. Rotational minima and their relative energies for the 55 possible
combinations of these groups are based on MM3 potential energy surfaces calculated after
combining the 10 three-dimensional structures shown above which represent the simplest degree
of substitution, in other words, the case where X = methyl and R = H.

Figure 6. The combination of two 1,3-propanediamine chelate rings yields a macrocyclic
structure that would be rejected because of the superposition of the terminal methyl groups.

HostDesigner Manual

11

2.1.3 Scoring structures built by LINKER
Two scoring methods are used to prioritize the structures produced from a LINKER

run. The first method ranks the structures in terms of complementarity estimated using
geometric parameters. The second method ranks the structures in terms of
preorganization, based on an estimate of the conformational energy of the host structure.

During the construction of each complex fragment, the guest was positioned relative
to a host component to define a complementary geometry with the binding sites in that
host component. When two complex fragments are linked, the degree of superposition of
the two guests provides a simple criterion for the rapid evaluation of the degree of
complementarity in the new host. Optimal complementarity would be obtained when the
root mean squared deviation, RMSD, of the distances between equivalent pairs of atoms
in the two guests is zero, in other words, when the two guests representing the optimal
bonding orientation with respect to each host component are exactly superimposed.

In the example given in Figure 3 each guest is a single lithium ion and the RMSD is
simply the distance between them. These distances range from 0.50 to 8.20 Å, the host
structure with the shortest Li--Li distance clearly gives the most complementary
placement of the two ether binding sites. LINKER would use the Li--Li distance to score
the generated host structures and output Cartesian coordinates for each structure in the
order of increasing distance, in other words, in order of decreasing complementarity for
the guest.

In the case of single metal atom guests, there is an additional geometric feature that
can be addressed when scoring the structures. Assuming that the geometries of the
complex fragments were accurately defined, then host structures that superimpose the
two metal ions will, by definition, have complementary binding sites with respect to the
M-L distances, the M-L-X bond angles, and the M-L-X-X dihedral angles (M = metal, L
= donor atom, X = any atom). This definition of structural complementarity is sufficient
for metal ion guests that do not exhibit bonding directionality such as the Group 1A and
2A metals and the trivalent lanthanides and actinides. However, some metal ions, such as
Cu(II), Pt(II), and Pd(II), exhibit distinct metal-centered bonding directionalities. In
these cases, a complementary host architecture must also provide an array of donor atoms
to produce L-M-L angles that correspond to the preferred bonding directionality of the
metal ion. To address this issue, an optional screening capability is available in LINKER
to retain only those hosts in which the donor atoms are located near the verticies of
idealized polyhedra. Any one of the following stereochemistries may be specified:
tetrahedral, square planar, square pyramidal, trigonal bipyramidal, or octahedral (see
Section 3.2).

In the case of multi-atom guests, the determination of RMSD requires HostDesigner to
decide how the atoms from one guest should be paired with the atoms from the other
guest for the superposition. This is done automatically by the code. If the guest has
symmetry, there may be more than one way to pair the atoms. In such cases, LINKER
will try every symmetry equivalent pairing of the atoms and report the minimal RMSD

HostDesigner Manual

12

result.

In addition to ranking the structures by RMSD, a second method is used to rank the
structures in terms of preorganization, based on an estimate of the relative conformational
free energy of the host structure. The conformational free energy is estimated using the
following equation:

∆Gconf = ∆Hlink + ∆HbondA + ∆HbondB + Nrot•∆Grot

The first three terms are enthalpic. A ∆Hlink value is stored in the LIBRARY for each
linking fragment (see Section 2.3). When the linking fragment has only one conformer,
this value is zero. However, when the linking fragment has more than one conformer, the
∆Hlink value is the relative enthalpy for that conformer with two methyl groups attached
to the binding sites, obtained from MM3 calculations. The ∆HbondA and ∆HbondB terms
are the relative rotamer energy associated with the first and second bond formed during
the building process. The values assigned to each rotamer are based on MM3 potential
surfaces for the groups shown in Figure 5. The final term, Nrot•∆Grot, is an estimate of
the entropic penalty associated with restricted rotation of single bonds. The Nrot value is
the sum of the rotatable bonds in the link, read from the LIBRARY, plus user-defined
values for the attachment points in the complex fragments. The free energy per rotatable
bond is set to a default value of 0.61 kcal/mol per restricted rotation. After LINKER
sorts the output by RMSD, the list of structures is sorted again, to yield a second output
file prioritized by ∆Gconf.

The authors would like to caution the user from over interpreting the results produced
from the LINKER algorithm. This algorithm is designed to examine large numbers of
structures in a short period of time, identifying candidate architectures that are potentially
complementary and/or preorganized for guest complexation by the definitions given
above. Every effort has been made to provide accurate linking fragments and dihedral
angle assignments. However, please recognize that small changes in individual structural
parameters, which often do not cost much in terms of energy, can have a significant
impact on the resulting structure. Because the algorithm is connecting rigid components
and using generic dihedral angles, the ranking of the structural complementarity based on
the superposition of guest atoms should be regarded as somewhat crude. When these
distances differ by angstroms, then the difference between convergent and divergent
binding sites is clear (see, for example, Figure 3). However, when these distances differ
by less than an angstrom, the ranking becomes more uncertain. Similarly, the ranking of
preorganization, based on conformational energies derived from simple alkane and
alkene potential surfaces, may not accurately reflect the conformational stability of the
host architectures. To obtain a more accurate prioritizations, the list of structures initially
generated by LINKER can be subjected to further analyses using more expensive
methods such as force field or electronic structure calculations.

HostDesigner Manual

13

2.2 The OVERLAY algorithm.
2.2.1 Overview

The OVERLAY algorithm represents a different approach than that used in the
LINKER algorithm. It forms host molecules by combining one user–defined complex
fragment with a linking fragment. Two examples where OVERLAY could be applied are
shown in Figure 7. In the first example (left), U(IV) forms a stable tetrakis-catecholate
complex with a dodecahedral geometry. Is it possible to find a connecting structure to
that will bridge two catecholates at the ortho carbons of the catecholate fragments? In
the second example (right), two N-methylureas are coordinated to nitrate. Is it possible to
find a connecting structure that will bridge the two ureas through the methyl groups?

Figure 7. Examples of cases where the OVERLAY algorithm would be used. Possible
bonding vectors, created by removal of hydrogen atoms are indicated by the black lines.

2.2.2 The Building Algorithm

OVERLAY builds new host structures by forming two bonds between one complex
fragment and one linking fragment. The user must provide an input file for the complex
fragment that specifies the coordinates for all the atoms, atom connectivity, and pairs of
attachment points (see Section 3.4). Attachment points are indicated by listing hydrogen
atoms that will be lost from the complex fragment. As with LINKER, the type of
attachment points that can currently be specified are limited to C(alkane), C(alkene),
C(arene), O(ether), and N(amine). The steps used by OVERLAY to construct a new
structure are as follows: (1) select a linking fragment from the LIBRARY, (2) adjust the
lengths of the bonding vectors on the complex fragment and the linking fragment to the
ideal lengths for the type of bonds that would be formed, (3) compare the geometries of
the linking fragment bonding vectors and the complex fragment bonding vectors, (4) if
the vector geometry is similar, then superimpose the bonding vectors of the linking
fragment on the bonding vectors of the complex fragment to achieve the best overlay, and
(5) form bonds between the complex fragment and linking fragment.

HostDesigner Manual

14

Comparison of vector geometries in step (3) involves taking the difference in three
geometric parameters shown in Figure 8. These are the distances, d1 and d2, and the
dihedral angle, Φ. All three differences must be within user-defined tolerance limits.
Smaller tolerance values give fewer results of higher quality. Larger tolerance limits give
more results, but more of the structures may have distorted geometries. As a
compromise, we use tolerance limits of 1.60 Å for the distances and 90° for the dihedral
angles.

The resulting structure may still be rejected even if the bonding vectors of the linking
fragment are perfectly superimposed on the bonding vectors of the complex fragment.
Although a perfect superposition ensures optimal bond distances and bond angles, the
dihedral angles about each of the new bonds could have any value. Thus, after a new
structure has been built, OVERLAY checks the difference between the actual dihedral
angles and the dihedral angle corresponding to the nearest local minimum. As described
above (see Section 2.1.2), data for the position of rotational minima have been derived
from examination of MM3 potential surfaces. If the rotational periodicity is > 4, all
structures are accepted. Otherwise, the structure will be rejected if the difference in
dihedral angles is greater than a threshold value that depends on the periodicity of the
rotational potential: 2-fold, 45°; 3-fold 30°; 4-fold 30°. Finally, as with LINKER, the
structure will be rejected if there are any unallowed close contacts between non-bonded
atoms in the linking fragment and the complex fragment.

Figure 8. Parameters d1, d2, and Φ used to compare the bonding vectors in the linking fragment
and the complex fragment.

During a typical run, OVERLAY will examine many different link structures. In
addition, the ability to vary the geometry of the complex fragment (see Section 3.4) can
increase the number of starting structures dramatically. Therefore, it is possible to
generate large numbers of structures. The resulting hosts are prioritized and only the best
structures are written to the output files (see Section 2.2.3). As with LINKER, the user
has some control over which links will be used for building. Searches can be limited by
specifying a minimum or maximum length of the linker, the number of rotatable bonds in
the link, the valence of the bonding atoms, and the maximum conformational energy

HostDesigner Manual

15

(when a link derives from a structure that has more than one conformer). Sections 3.2 and
3.4 provide further detail on how to control this application.

2.2.3 Scoring Structures Built by OVERLAY
Two scoring methods are used to prioritize the structures produced from an

OVERLAY run. The first method ranks the structures in terms of how well the linking
fragment fits onto the complex fragment. The second method ranks the structures in
terms of preorganization, based on an estimate of the conformational energy of the host
structure. The degree–of–fit is measured by the root mean squared displacement, RMSD,
of four points on the complex fragment with four points on the linking fragment, where in
each case, the four points are the ends of the bonding vectors. In addition to ranking the
structures by RMSD, a second method is used to rank the structures in terms of
preorganization, based on an estimate of the relative conformational free energy of the
host structure. The approach is identical to that used with LINKER (see Section 2.1.3 for
a description).

2.3 The Linking Fragment LIBRARY
2.3.1 Library development.
 A linking fragment library file named LIBRARY is provided with the HostDesigner
software. This section of the manual describes how it was developed. In building the
initial library, it was decided 1) to limit the entries to molecules containing hydrogen and
up to six carbon atoms, 2) to limit carbon hybridization to C(sp2) and C(sp3), and 3) to
exclude three- and four-membered rings. With these limitations, a systematic evaluation
yielded a total of the 86 connectivities shown in Figure 9a. Subsequently, 66 additional
connectivities representing dimethylated 5 and 6 membered rings (see Figure 9b) and 59
additional bi- and tri-cyclic connectivites (see Figure 9c) have been added. These
connectivities have been used to create a LIBRARY containing a total of 11,297 links.

The process used to create the linking fragments is summarized in Figure 10. The
process starts by selecting a hydrocarbon molecule. The molecule is conformer searched
with the MM3 force field. A conformer is selected and a pair of hydrogens are replaced
by methyl groups and the structure is reoptimized with the MM3 program. When the link
structure is used by HostDesigner, the complex fragments will add steric bulk at these
sites and by optimizing with methyl groups at these sites the link structure is pretreated
for future attachment to carbon substituents. After optimization, the added methyl groups
are then replaced by dummy atoms with C-dummy bond lengths of 1.0 Å. The new link
is checked for degeneracy, that is, to make sure that it neither identical to or the mirror
image of an existing link. It is then added to the library. In constructing the library, this
process was repeated for every possible pair of hydrogens on the molecule and for every
conformer of the molecule.

HostDesigner Manual

16

Figure 9a. Connectivities for 0 to 6 carbons excluding alkynes and small (3– or 4–membered)
rings (86 structures, 195 conformers). The null link, 0 carbons, is used by LINKER to directly
connect the two complex fragments.

HostDesigner Manual

17

Figure 9b. Dimethylated 5– and 6–membered ring connectivities (66 structures, 93 conformers).

HostDesigner Manual

18

Figure 9c. Additional rigid connectivities added to the link library (59 structures, 85
conformers).

HostDesigner Manual

19

Figure 10. A summary of the process used to create linking fragments.

Given the above process, note that the library does not contain both enantiomers of a
chiral linking fragment. However, if a link is chiral, then both the LINKER and
OVERLAY algorithms can consider the mirror image during the building process (see
Section 3.2).

Initially, all new links were simply entered into the library in order of increasing
molecular weight. However, as the size of the library increased, we encountered a
problem with this approach. This problem has to do with the fact that many links have
very similar geometry. For example, the 1,1-ethane link has bonding vectors that are
almost the same as the 1,1-propane, 1,1-butane, 1,1-pentane, and 1,1-hexane links. Thus,
if a 1,1-alkane linkage gives the best result, the code will generate an entire family of 1,1-
alkane linked structures that will dominate the output. To overcome this problem, we
adopted a method of grouping link structures into families based on geometric features of
the bonding vectors. At the same time, we developed a classification scheme to organize
the library with respect to the connectivity, the hybridization of the bonding atoms, and
the molecular weight of the link. Now the library is organized by class, as described in

HostDesigner Manual

20

Section 2.3.3, with a maximum of 5 linking fragments per class. During a run, the user
has the option to examine every link in the library or to limit examination to the first
member of each class. The current library of 11,297 links represents a total of 6094
classes.

2.3.2 Format of a Linking Fragment LIBRARY Entry
The LIBRARY is an ascii file consisting of a sequential series of entries. Each entry

contains information that completely describes a linking fragment. Below is an example
of the entry for a linking fragment made from butane. Except for the first line, each entry
is read in a free format fashion which means that it is not critical how many spaces are
left between each entry on a line. The blue numbers on the right of this sample library
entry are line numbers for refererence in this manual, and are not used in practice.

LINK 4278 C(3),H(6) propane 1
 11 3 C 3 1 1 2 2
 10 1 C 3 1 1 2 3
 3 F T F F T 3.263 4 4
 2.60478 98.32305 110.88034 22.02282 5
 11 6
 1 C -2.536500 0.193900 -0.045900 1 2 4 10 5 7
 2 C -1.158100 0.781800 -0.420700 1 1 3 6 7 8
 3 C 0.049300 -0.116000 -0.095800 1 2 8 9 11 9
 4 H -3.293300 0.567200 -0.774600 5 1 10
 5 H -2.517500 -0.914100 -0.161900 5 1 11
 6 H -1.030000 1.775800 0.065800 5 2 12
 7 H -1.150000 0.978200 -1.518400 5 2 13
 8 H 0.968100 0.368300 -0.501300 5 3 14
 9 H -0.053500 -1.084200 -0.638500 5 3 15
 10 X -2.848955 0.434590 0.873034 0 1 16
 11 X 0.192026 -0.298433 0.877004 0 3 17

Line 1: Always begins with LINK. The next 5 characters are a serial number that should
be unique. The example given is the 4278th entry in the LIBRARY file. Characters 31
through 67 on this line are the name of the molecule from which the link was derived,
and will be printed in the output along with the serial number.

Lines 2 and 3: These two lines concern the attachment points. Each link has two
attachment points which are indicated by the dummy atoms that will be lost when bonds
are made (in this case, ‘atoms’ 13 and 14.) There are seven variables per line: the serial
number of the dummy atom, the serial number, atom label, and hybridization (2 = sp2, 3 =
sp3) of the atom it is bonded to, the class (row in Figure 5) and subclass (column in
Figure 5) and finally the serial number of one of the other atoms bound to the binding
atom for use as a reference point for setting dihedral angles.

HostDesigner Manual

21

Line 4: Contains eight variables: the number of atoms in the shortest path between the
two dummy atoms, attachment symmetry based on 3D structure, superimposable mirror
image, chiral based on connectivity, prochiral based on connectivity, attachment
symmetry based on connectivity, relative energy of the conformer, and the number of
rotatable bonds in the link.

The number of atoms in the shortest path between the two dummy atoms is an
integer between 0 and 999.

The 3D attachment symmetry is a logical variable. A value of T indicates that
switching the order of attachments would yield either the same 3D structure or its
mirror image.

The superimposable mirror image is a logical variable. A value of T indicates
that the mirror image of the 3D link structure is superimposable on the original
3D link structure.

The next three logical variables refer strictly to the connectivity of the link,
independent of its 3D conformation. Chiral is T if the link is chiral, prochiral is T
if the link is prochiral, and the attachment symmetry is T if switching the
attachment points for two structurally different groups yields a structure with
identical connectivity. There are five possible settings for these three variables.
Examples are illustrated below where groups A and B have been attached to
various linking fragments:

The next variable gives the relative conformational energy of the link. This
number is one of the components used to estimate the conformational energy of
the host (see Section 2.1.3).

The final number is the number of rotatable bonds in the link. With one
exception, this value is defined as number of single bonds between the dummy
atoms that are not within a cyclic structure. The exception is the null link, used
by LINKER to connect the two complex fragments directly to each other. In this
case, there is one rotatable bond.

Line 5: Contains four variables that describe the geometry of the bonding vectors:
distance (d), angle1 (θ1), angle2 (θ2), and dihedral angle, (Φ). These values are used to
classify the link and also used in the OVERLAY algorithm to decide whether to attempt
to superimpose bonding vectors. The parameters are defined as shown in the scheme
below where d is the distance between the two carbon atoms, θ1 is the angle between the

HostDesigner Manual

22

first C-X vector and the C-C vector, θ2 is the angle between the second C-X vector and
the C-C vector, and Φ is the dihedral angle between the two C-X vectors about the C-C
axis. When both dummy atoms are attached to the same carbon, as in this example, then
θ1 = θ2 = 90° + 1/2 the angle between the two C-X vectors and Φ = 0°. In the existing
library, the molecule is numbered such that θ1 is always ≤ θ2. In addition, the chirality of
the molecule is chosen such that Φ is always in the range of 0 and 180°.

Line 6: The number of atoms in the link including the two dummy atoms.

Lines 7 to end: There is one line per atom. Each line contains the following informaton:
The serial number, the atom label, x, y, and z coordinates, the MM3 atom type number,
and a connectivity list by serial number. The atom label is a two character string. It is
assigned a value of X for the dummy atoms. The MM3 atom type numbers used in the
current library are limited to 1 (sp3 carbon), 2 (alkene carbon or arene carbon), 5
(hydrogen) and 0 (dummy atom). The connectivity list is simply a list of all serial
numbers to which this atom is attached. The connectivity list can contain up to ten
atoms. Note that the serial order of the atoms is important. The carbons (and, in
principle, any other heavy atom would) always go first, the hydrogens always go next,
and the two dummy atoms must always go last.

2.3.3 How to Add a New Link to the LIBRARY.

The user can create additional links to expand the existing LIBRARY or they can
define their own personal linking fragment library. A limitation in the supplied code is
that a link may have no more than 35 atoms. Assuming that the user has created a new
link and formatted a link entry as described above, the entry should be added to the
existing library as follows.

The library is organized by class and each class section begins with a header line. An
example of a class header line is shown below:

CLASS connectivity= 1 nrot= 2 C(sp3),C(sp3) type(1)

Classes are defined by the connectivity, in other words, the number of carbon atoms that
would be between two groups connected to this link, by the number of rotatable bonds,
by the hybridization of the bonding carbons, and by the geometry of the bonding vectors.
Classes are arranged first in order of increasing connectivity (number of atoms in the

HostDesigner Manual

23

shortest path between connection points), next in the order of increasing number of
rotatable bonds, and finally by difference in the bonding vector geometry. If a new link
has the same characteristics of an existing class, and the geometric parameters are the
same as the first member of that class, to within 0.1 Å for distance, 3° for angles, and 5°
for dihedrals, then it is a member of that class. Otherwise, it becomes the first member of
a new class.

Before adding a link to the library, it is necessary to identify the class to which the
new link belongs. If the new link does not belong to an existing class, then you should
create a new class header line and insert it in the proper position in the library. Currently,
the only format requirement for this line is that the first four characters must be ‘CLAS’.
When inserting a new class, it is particularly important that the connectivity numbers be
in ascending order, as the code simply skips the remainder of the library after reading a
link with a connectivity greater than the user specifies as the maximum for that run.

HostDesigner Manual

24

3.0 HOW TO DRIVE HOSTDESIGNER
3.1 Installation

Before you run HostDesigner, first set up a working directory that contains the
HostDesigner executable and the two files provided with the code named ‘LIBRARY’
and ‘CONSTANTS’. To run HostDesigner, you must make some input files and place
them in the working directory. This can be done with any text editor. Alternatively, the
utility program HDViewer is able to produce properly formatted input files from
imported coordinates. The format of these files is described in the following sections.

3.2 The File Named ‘control’
The control file is a mandatory input file that tells HostDesigner what to do. It must

be named ‘control’. The control file can be prepared with any plain text editor (Caution:
Windows users may generate a text file that appears to be named ‘control’, but is actually
named ‘control.txt’). Alternatively, it is possible to generate a control file with the
HDViewer utility (see Section 6.0 of the HDViewer User’s Guide).

A ‘control’ file is composed of a list of keywords. These keywords are entered on lines
that are 80 characters in length. You may put as many keywords on one line that will fit
within this length. If more than one line is used, then you must specify that another line
will be read by placing the keyword ‘AND’ in the preceding line.

Here is an example of acceptable format for the ‘control’ file:
keyword1 keyword2 keyword3 keyword4 keyword5

And this is also an acceptable way to format the same information:
keyword1 AND
keyword2 AND
keyword3 AND
keyword4 AND
keyword5

Keywords can be given in any order. Keywords must be separated from one another
by at least one space. Some keywords are used to specify additional numeric or string
input. In such cases, no spaces may be present within the keyword. For example,
‘numview = 200’ will result in an error while ‘numview=200‘ will not. Note also that
keywords are case sensitive. The following are a list of keywords that are allowed by
HostDesigner.

Mandatory Keyword:
One, and only one, of these two keywords must be present in the ‘control’ file.
LINK Tells the code to do a LINKER run

OVER Tells the code to do an OVERLAY run

HostDesigner Manual

25

Optional Keywords:

AND Used when more than one line is needed in the control file. Instructs
the code to continue reading input from the next line. If the line being
read does not contain the AND keyword, then all subsequent lines are
not checked for keywords.

hosta=name Specifies the filename containing the complex fragment used in
OVERLAY, or containing the first complex fragment used in
LINKER (See Sections 3.3 and 3.4). The name may be a maximum of
20 characters in length. If no name is specified, then the default
filename is ‘hosta’.

hostb=name Specifies the filename containing the second complex fragment used
in LINKER (See Section 3.3). The name may be a maximum of 20
characters in length. If no name is specified, then the default
filename is ‘hostb’.

linklib=name Specifies the name of the link library. The name may be no more
than 60 characters in length. If no name is specified, then the default
filename is ‘LIBRARY’.

mirroraoff By default, LINKER uses both the ‘hosta’ structure and its mirror
image for building structures. This keyword turns this feature off and
uses only the geometry specified in ‘hosta’. This is not recommended
for use with chiral or prochiral complex fragments.

mirrorboff By default, LINKER uses both the ‘hostb’ structure and its mirror
image for building structures. This keyword turns this feature off and
uses only the structure specified in ‘hostb’. This is not recommended
for use with chiral or prochiral complex fragments.

drivea This keyword applies geometry drives specified for ‘hosta’ (see
Section 3.5).

driveb This keyword applies geometry drives specified for ‘hostb’ (see
Section 3.5).

testdrive This keyword is used to test the geometry drive specifications. When
used, the code will write out all sets of coordinates for the complex
fragments after drives have been applied and stop before any host
structures are built. The results are written to files named
‘string_testa.xyz’ and/or ‘string_testb.xyz’, where ‘string’ is defined
by the out=string keyword.

macro Turns on the macrocycle feature of LINKER.
metshape=name Used to reject host structures when binding sites do not fit a specified

topology about a single atom guest. Reads a 4 character string that

HostDesigner Manual

26

may be set equal to NONE, TETR (tetrahedral), SQPL (square
planar), TBPY (trigonal bipyramid), SQPY (square pyramid), or
OCTA (octahedral). The default setting is NONE. This keyword can
be applied to partial occupations of a target polyhedron, keeping only
those structures in which the binding sites are on contiguous verticies.
For example, with tridentate structures, the OCTA specification
would keep only structures with either fac or mer topologies.

useclass This keyword makes HostDesigner only use the first structure from
each class in the link library.

nochiral All chiral links are discarded.

noprochiral All prochiral links are discarded.

noasym All links that would give a different connectivity when the attachment
points are switched are discarded.

xyz Limits the information provided in the output files. By default, each
atom line contains the label, x, y, z Cartesian coordinates, atom type,
and list of connected atoms. If the xyz keyword is present, each atom
line contains only the label and the Cartesian coordinates (format
used with earlier HostDesigner Version 1.0). The HDViewer utility
will read either output format.

minconn=# An integer equal to the minimum number of atoms in the minimal
path through the link, this defaults to 0. If set higher, the shorter path
structures in the link library will be skipped.

maxconn=# An integer equal to the maximum number of atoms in the minimal
path through the link, this defaults to 9. If set lower, the longer path
structures in the link library will be skipped.

maxconfe=# A real number which defaults to 100.0. A potential hit will be
discarded if the estimate of its relative conformational energy (see
Section 2.1.3) exceeds maxconfe kcal/mol.

maxnrot=# An integer which defaults to 9. A potential hit will be discarded if the
total number of rotatable bonds, the sum of rotatable bonds in the
linking fragment (see Section 2.3.2) plus rotatable bonds in the
complex fragment (see Section 3.3 and 3.4), exceeds maxnrot.

maxrmsd=# A real number which is used to control whether a hit will be stored in
memory during a LINKER or OVERLAY run. When the root-mean-
squared deviation, RMSD, for the hit exceeds maxrmsd, the hit will
be rejected. RMSD measures the degree of guest superposition in
LINKER runs (see Section 2.1.3) or the degree of bond vector
superposition in OVERLAY runs (see Section 2.2.3).

HostDesigner Manual

27

numview=# An integer equal to the maximum number of structures to be printed
to output. The maximum possible value is 1000. The default is set to
100.

out=string A string with a maximum length of 20 characters. The default setting
is ‘out’. The string specified by this keyword is used as the prefix for
the output files, which will thus be named ‘string.summ’,
‘string_1.hdo’ and ‘string_2.hdo’ (see Section 3.6).

numkeep=# An integer equal to the maximum number of structures to be stored in
memory during code execution. The default is set to the maximum
number of 1000. The code will generally run faster if either this
number or maxrmsd is set to be smaller. Note that if numkeep is
larger than numview the entries in ‘string_2.xyz’ may not be the
same structures as those in ‘string_1.xyz’ (see Section 3.6).

Here is an example of a ‘control’ file that presents the minimal amount of input:

OVER

This control file tells the code to use the OVERLAY algorithm. It will look for the
default names of the other input files, in other words, the link library must be named
LIBRARY and the complex fragment must be named ‘hosta’. Output files will be named
‘out_1.hdo’, ‘out_2.hdo’ and ‘out.summ’. All other options will be at their default
settings.

Here is an example of a ‘control’ file that uses many keywords:

LINK hosta=one hostb=two linklib=short mirroraoff mirrorboff AND
macro metshape=OCTA drivea driveb useclass minconn=1 maxconn=3 AND
maxnrot=3 maxconfe=0.0 maxrmsd=2.0 numview=20 out=three

This control file tells the code to use the LINKER algorithm with input files named ‘one’
and ‘two’, links from a library named ‘short’, not to consider mirror images of either
complex fragment, to use the macrocycle feature, to screen for octahedra, to consider
only the first links in each class in the library, to screen out links with connectivities < 1
or > 3 and with at most 3 rotatable bonds, to use only links derived from minimum
energy conformers, to name output files ‘three_1.hdo’, ‘three_2.hdo’, and ‘three.summ’,
store only structures with RMSD values less than or equal to 2.0 Å, and write at most 20
structures each to ‘three_1.hdo’ and ‘three_2.hdo’.

HostDesigner Manual

28

3.3 The Complex Fragment Files for the LINKER mode.

In addition to the ‘control’ file, the LINKER mode requires the user to prepare input
files that define the structure of the complex fragments that will be connected to the link
structures. The two complex fragment files, ‘hosta’ and ‘hostb’ (see previous section and
Section 5.1 of the HDViewer User’s Manual), can be identical or two different complex
fragments can be used. The following is an example of the complex fragment file for the
dimethylether lithium complex shown in Figure 2 above. All lines are free format so that
it does not matter how many spaces are left between the entries.

Lithium dimethylether, M-O = 2.26 Å 1
 10 1 2
 C 1 -0.796860 -1.176666 -0.008575 1 2 4 5 6 3
 O 2 0.000000 0.000000 0.000000 6 1 3 10 4
 C 3 -0.795944 1.177567 -0.008606 1 2 7 8 9 5
 H 4 -0.092346 -2.040680 -0.009293 5 1 6
 H 5 -1.374283 -1.179657 0.945770 5 1 7
 H 6 -1.366318 -1.171310 -0.968475 5 1 8
 H 7 -1.368774 1.184189 0.948334 5 3 9
 H 8 -1.369934 1.169693 -0.965530 5 3 10
 H 9 -0.090622 2.041031 -0.015411 5 3 11
 Li 10 2.259933 0.002136 -0.007889 125 2 12
 3 13
 4 C 0 1 14
 5 C 0 1 15
 6 C 0 1 16

Line 1: A title that can be up to 60 characters long.

Line 2: Two integers. The first integer is the number of atoms in the structure, n. The
maximum allowed value is 200. The second integer, ng, is the number of atoms in the
guest. The maximum allowed value is 50.

Lines 3 to 2 + n: Each line describes an atom in the structure and contains the following
information: the atom label, the serial number, the x, y, and z coordinates, the atom type
number, and a connectivity list. IMPORTANT: The atoms must be in serial order
with the non-hydrogen host component atoms first, the hydrogens next, and the
guest last. If dummy atoms are used, they must be numbered before the guest.

atom label is a two character string, with one exception corresponding to the normal
atom abbreviations used in the periodic table. The exception occurs with dummy
atoms, used in optional geometry drives, which must be named either ‘Du’ or ‘DU’.
The atom label is used to set atom radii that are used in collision checks.

serial number is an integer. It is important that the atoms be sequentially numbered
from 1 to n.

x, y, and z coordinates are real numbers specifying the atom positions in Cartesian
space in units of Å.

atom type number is an integer that is used when setting bond distances and

HostDesigner Manual

29

dihedral angles about the bonds formed between two fragments. The following
atom types, based on MM3 values, should always be used if applicable: 1 (alkane
carbon), 2 (alkene or arene carbon), 5 (any hydrogen), 6 (alcohol or aliphatic ether
oxygen), 8 (amine nitrogen), and 41 (conjugated ether oxygen). Because the
foregoing atom type numbers have special significance to the program, inaccurate
structures may result if they are used incorrectly. Other types of atoms can be
present in the complex fragment, but other atom type numbers (not 1, 2, 5, 6, 8, or
41) should be used for atoms that are not in the above list. Note that it is not
necessary to use actual MM3 atom type numbers for other atoms, any number (not
1, 2, 5, 6, 8, or 41) can be used. For example, if one of the other atoms is Co, then
assigning it an atom type number of either 9, 99, or 999 will give exactly the same
results.

connectivity list is a series of no more than 10 integers that specify the serial
numbers of the atoms attached to this atom.

Line 3+n: An integer, na, giving the number of attachment points to the structure.
Minimum value is one. Maximum number of attachments is 20 for ‘hosta’ and 10 for
‘hostb’.

Line 4+n to 3+n+na: Each line contains up to four variables to describe one attachment
site. These are the serial number of a hydrogen atom that will be lost, atom label
specifying the kind of atoms that can attach, the hybridization of atoms that can attach,
and the number of rotatable bonds (optional).

serial number of hydrogen atom is an integer from 1 to n that specifies which
hydrogen atom will be lost to generate an attachment point. Currently hydrogen
atoms may be lost from alkane carbons, alkene carbons, arene carbons, aliphatic
alcohol oxygens, phenol oxygens and amine nitrogens. In other words, bonds can
be made only to these types of atoms.

atom label is a two character string, corresponding to the normal atom abbreviations
used in the periodic table, which must match the atom label of the link atom that
will replace the hydrogen. At this time, all links in the library bond to the complex
fragment via carbon only. Thus, ‘C ‘ is appropriate. Alternatively, the user can
specify ‘XX’, which indicates any atom type.

hybridization is an integer that limits the hybridization of the link atom that will
replace the hydrogen. Allowed values are: 0 = any hybridization, 2 = sp2

hybridization, or 3 = sp3 hybridization.

rotatable bonds (optional) is an integer that is added to the number of rotatable
bonds in the linking fragment to obtain the total number of rotatable bonds in the
molecule, a descriptor that can be used to screen out hits. It is meant to represent
the number of single bonds within the complex fragment that would experience
restricted rotation on complexation with the guest. If no value is provided, the
variable is assigned a value of zero.

HostDesigner Manual

30

The type of information described in the above example is required for all complex
fragments used by LINKER. In addition, there are two instances where the user may
need to add further information by appending additional lines to the bottom of the
complex file. This occurs when the user invokes the option to drive the geometry of the
complex fragment (keywords drivea and/or driveb present in the control file) and when
the user invokes the macrocycle option (keyword macro present in the control file).

If using drivea, then the ‘hosta’ file must contain extra lines. If using driveb, then the
‘hostb’ file must contain extra lines:

Line 4+n+na: A ‘D ’ followed by an integer, ndrives, equal to the number of drive
lines to be read in. The maximum value is 10.

Lines 5+n+na to 4+n+na+ndrives: Drive lines. This will be described in more detail
below (see Section 3.5 for format and examples).

If using macro, then both the ‘hosta’ and ‘hostb’ files must contain one extra line:

Line 4+n+na or 5+n+na+ndrives An ‘M ‘ followed by an integer equal to the serial
number of the terminal methyl carbon that may be used to form a macrocycle.

The following is an example of a complex fragment file for a metal complex with 1,3-
propanediamine in which three attachment points are specified on carbon #1 and line 29
has been added to indicate that carbon #7, the other terminal methyl group, will be
considered as an attachment point for closing a macrocyclic ring (this complex fragment
is shown in Figure 6 above).
propanediamine/Zn 1
 22 1 2
 C 1 -2.744568 -1.091492 0.719391 1 2 8 9 10 3
 N 2 -1.485229 -0.921844 -0.013840 8 1 3 11 22 4
 C 3 -1.341080 0.395233 -0.637756 1 2 4 12 13 5
 C 4 0.009200 0.606461 -1.335159 1 3 5 14 15 6
 C 5 1.214111 0.694580 -0.389084 1 4 6 16 17 7
 N 6 1.534683 -0.567978 0.280029 8 5 7 21 22 8
 C 7 2.636261 -0.461166 1.242981 1 6 18 19 20 9
 H 8 -3.600021 -1.143800 0.009384 5 1 10
 H 9 -2.922653 -0.199707 1.381058 5 1 11
 H 10 -2.699600 -1.995102 1.345093 5 1 12
 H 11 -1.381851 -1.656052 -0.710022 5 2 13
 H 12 -2.162979 0.544037 -1.375290 5 3 14
 H 13 -1.468338 1.194092 0.145157 5 3 15
 H 14 -0.045547 1.556870 -1.916200 5 4 16
 H 15 0.176651 -0.199600 -2.085220 5 4 17
 H 16 1.003815 1.483582 0.385712 5 5 18
 H 17 2.104904 1.044022 -0.959946 5 5 19
 H 18 2.476196 0.432693 1.906357 5 7 20
 H 19 3.600021 -0.300354 0.710037 5 7 21
 H 20 2.681183 -1.364746 1.868713 5 7 22
 H 21 1.736420 -1.290649 -0.406464 5 6 23
 Ni 22 -0.022873 -1.404984 1.416504 100 2 6 24
 3 25
 8 C 0 5 26
 9 C 0 5 27
10 C 0 5 28
M 7 29

HostDesigner Manual

31

3.4 The Complex Fragment File for the OVERLAY mode.
In addition to the ‘control’ file, OVERLAY mode requires the user to prepare one

input file, ‘hosta’ (see Section 3.2 of this manual and Section 5.2 of the HDViewer User’s
Manual) that defines the structure of a complex fragment. The following is an example
of the complex fragment made from the uranium complex shown in Figure 7 above. The
format is similar, but in several instances differs from the format used to define complex
fragments used by LINKER.

Uranium Tetrachatecholate - dodecahedral 1
49 1 2
O 1 -1.71600 -1.47600 0.65700 6 9 49 3
O 2 -0.91400 -1.15300 -1.85100 6 14 49 4
O 3 -1.71600 1.47600 -0.65700 6 15 49 5
O 4 -0.91400 1.15300 1.85100 6 20 49 6
O 5 0.91400 1.15300 -1.85100 6 21 49 7
O 6 1.71600 1.47600 0.65700 6 26 49 8
O 7 0.91400 -1.15300 1.85100 6 27 49 9
O 8 1.71600 -1.47600 -0.65700 6 32 49 10
C 9 -2.33500 -2.21500 -0.30000 2 1 10 14 11
C 10 -3.35700 -3.11600 0.00100 2 9 11 33 12
C 11 -3.95600 -3.84800 -1.02800 2 10 12 34 13
C 12 -3.53300 -3.67900 -2.35000 2 11 13 35 14
C 13 -2.50900 -2.77600 -2.65100 2 12 14 36 15
C 14 -1.91200 -2.04500 -1.62200 2 2 9 13 16
C 15 -2.33500 2.21500 0.30000 2 3 16 20 17
C 16 -3.35700 3.11600 -0.00100 2 15 17 37 18
C 17 -3.95600 3.84800 1.02800 2 16 18 38 19
C 18 -3.53300 3.67900 2.35000 2 17 19 39 20
C 19 -2.50900 2.77600 2.65100 2 18 20 40 21
C 20 -1.91200 2.04500 1.62200 2 4 15 19 22
C 21 1.91200 2.04500 -1.62200 2 5 22 26 23
C 22 2.50900 2.77600 -2.65100 2 21 23 41 24
C 23 3.53300 3.67900 -2.35000 2 22 24 42 25
C 24 3.95600 3.84800 -1.02800 2 23 25 43 26
C 25 3.35700 3.11600 0.00100 2 24 26 44 27
C 26 2.33500 2.21500 -0.30000 2 6 21 25 28
C 27 1.91200 -2.04500 1.62200 2 7 28 32 29
C 28 2.50900 -2.77600 2.65100 2 27 29 45 30
C 29 3.53300 -3.67900 2.35000 2 28 30 46 31
C 30 3.95600 -3.84800 1.02800 2 29 31 47 32
C 31 3.35700 -3.11600 -0.00100 2 30 32 48 33
C 32 2.33500 -2.21500 0.30000 2 8 27 31 34
H 33 -3.69500 -3.25400 1.04200 5 10 35
H 34 -4.76400 -4.56200 -0.79700 5 11 36
H 35 -4.00900 -4.25900 -3.15900 5 12 37
H 36 -2.18000 -2.64600 -3.69600 5 13 38
H 37 -3.69500 3.25400 -1.04200 5 16 39
H 38 -4.76400 4.56200 0.79700 5 17 40
H 39 -4.00900 4.25900 3.15900 5 18 41
H 40 -2.18000 2.64600 3.69600 5 19 42
H 41 2.18000 2.64600 -3.69600 5 22 43
H 42 4.00900 4.25900 -3.15900 5 23 44
H 43 4.76400 4.56200 -0.79700 5 24 45
H 44 3.69500 3.25400 1.04200 5 25 46
H 45 2.18000 -2.64600 3.69600 5 28 47
H 46 4.00900 -4.25900 3.15900 5 29 48
H 47 4.76400 -4.56200 0.79700 5 30 49
H 48 3.69500 -3.25400 -1.04200 5 31 50
U 49 0.00000 0.00000 0.00000 200 1 2 3 4 5 6 7 8 51
 6 52
40 C 0 0 53
45 C 0 0 54
40 C 0 0 55
33 C 0 0 56
40 C 0 0 57
44 C 0 0 58

HostDesigner Manual

32

Line 1: Title string that can be up to 60 characters long.

Line 2: Two integers. The first integer is the number of atoms in the structure, n. The
maximum allowed value is 200. The second integer, ng, is the number of atoms in the
guest. The maximum allowed value is 50.

Lines 3 to 2+n: The same information as described above for LINKER.

Line 3+n: An integer, na, which is the number of attachment points in the structure.
Unlike LINKER, OVERLAY uses pairs of attachment points. Therefore, na must be an
even number. A maximum of 20 attachment points, in other words, a maximum of 10
pairs, can be specified.

Line 4+n to 3+n+na: The attachment points. The information used to specify each
attachment point is identical to that described for LINKER (see above). In this example,
there are three pairs of attachment points: 40 and 45, 40 and 33, 40 and 44. During the
building process, OVERLAY will attempt to superimpose linking fragments across each
of these three pairs of attachment points.

The type of information described in the above example is required for all complex
fragments used by OVERLAY. In addition, there is one instance where the user may
need to add further information by appending additional lines to the bottom of the
complex file. This occurs when the user invokes the option to drive the geometry of the
complex fragment (keyword drivea present in the control file).

If the drivea keyword is in the control file, then:

Line 4+n+na: A ‘D ‘ followed by an integer, ndrives, equal to the number of drive lines
to be read in. The maximum value is 10.

Lines 5+n+na to 4+n+na+ndrives: Drive lines. This will be described in more detail
below (see Section 3.5 for format and examples).

HostDesigner Manual

33

3.5 Geometry Drives

In Version 1.0, the complex fragments were defined as rigid geometries. This
approach allowed the user to specify a single orientation of the host component with
respect to the guest, one which was meant to represent the most complementary
orientation. However, there are number of cases where it is either not desireable or not
possible to use a single optimal geometry for the complex fragment. In Version 2.0, the
geometry of each complex fragment can now be varied during the building process by
driving specified degrees of freedom. This optional feature has been found to be very
useful in cases where the input structures are known to be flexible allowing the code to
generate more host structures of better quality.

To use the optional geometry drive feature, it is necessary to include the appropriate
keyword in the control file and to include additional information at the bottom of the
complex fragment input file. The keyword drivea instructs the code to read drive
information from the first complex fragment input file. The keyword driveb instructs the
code to read drive informaton from the second complex input file. Either one or both of
these keywords can be used in a run.

Drive information is appended to the bottom of a complex fragment input file as follows:

Line 4+n+na: A ‘D ‘ followed by an integer, ndrives, specifying the number of drive lines
to be read in. Maximum value is 10.

Lines 5+n+na to 4+n+na+ndrives: The drive lines. Each line contains the following
information: a single character to specify the type of interaction to be driven (B = bond
distance, A = angle, D = dihedral angle), a single character specifying which atoms in
the complex fragment will move (G = guest, I = internal), a real number specifying the
starting value for the driven interaction relative to the input geometry, a real number
specifying the ending value for the driven interaction relative to the input geometry, the
drive interval, and either two or three integers that specify the serial numbers defining the
interaction. As will be illustrated by the examples given below, bond distances and
dihedral angles are specified by two serial numbers, and angles are specified by three
serial numbers. Each drive line will generate a number of geometries that are stored in an
array during execution of the code. Space in this array is currently allocated such that the
the product of the number of steps generated by each drive may not exceed 1000 for a
hosta complex fragment or 100 for a hostb complex fragment.

During the drive process, some atoms in the complex fragment are fixed and others
move. The second character in a drive line, either ‘G’ or ‘I’, specifies how the complex
fragment is divided and which atoms will move. When the ‘G’ designation is used, then
the guest will move relative to the rest of the atoms in the complex fragment. When the
‘I’ designation is used, then care must be taken in defining the drive line. The division of
atoms depends on the connectivity within the complex fragment and which atoms will
move depends on the serial number order in the drive line. Complex fragments can be
defined as one fully connected group of atoms or as several atom groups that are not
formally connected to one another. If the complex fragment is composed of n non-

HostDesigner Manual

34

connected groups, then the ‘I’ designation will divide the complex fragment into n + 1
non-connected groups. In a bond distance drive, the new group is created by splitting the
bond to be driven. In a angle drive, the new group is created by splitting the first bond
specified. In a dihedral angle drive, the new group is created by splitting the bond about
which the rotation occurs. In each case, the group containing the second serial number
defining the split bond will move relative to the other n groups.

Example 1. The user has defined a M-dimethylether complex fragment and wants to
drive the initial 2.0 Å M-O distance from 1.9 to 2.1 Å in 0.1 Å intervals.

Here is a drive line that yields the desired series of geometries. The ‘B’ indicates a bond
distance will be varied. The ‘G’ indicates that the guest, in this case a single M atom,
will move relative to the rest of the atoms. The next three numbers give the starting and
ending point of the drive relative to the input geometry, and the interval. Note that the
starting point must be less than the ending point and the interval must be a positive
number. Finally, the bond in question is defined by atoms number 2 and 10.

B G -0.1 0.1 0.1 2 10

When using the ‘G’ designation, where the guest always moves relative to the host, it
does not matter in which order the serial numbers are specified. In this case, the
following drive line would give identical results.

B G -0.1 0.1 0.1 10 2

Alternatively, this drive could be accomplished using the ‘I’, or internal coordinates,
designation. To use the ‘I’ designation, splitting the complex fragment at the specified
bond must give two non-connected molecular fragments. The second fragment,
everything that is attached to the second atom, will move relative to the first fragment,
everything attached to the first atom. In this example, the geometries generated do not
depend on which order the serial numbers are presented, in other words, both of the
following drive lines also perform the desired drive.

B I -0.1 0.1 0.1 2 10

B I -0.1 0.1 0.1 10 2

HostDesigner Manual

35

Example 2. The user has defined a Li-dimethylether complex fragment in which the Li
ion is not bonded to the oxygen. The user wants to drive one C-O bond distance from an
initial input value of 1.4 Å to 1.6 Å in 0.1 Å intervals.

This drive, which cannot be achieved by moving the guest alone, must be done with the
‘I’ designation. As above, there are two possible orders to specify the bond, either ‘1 2’
or ‘2 1’. In this example, however, only one of these drive specifications gives the
desired result. As in the previous example, the ‘I’ method splits the group of atoms
containing the C-O bond into two groups. Any part of the input structure, which is not
connected to either of these groups, will be associated with the first group, and the second
group will move. If the user wants the methyl group fragment to move relative to the
rest of the structure, including the metal ion, then the ‘2 1’ specification must be used.

Example 3. The user has defined a M-dimethylether complex fragment and wants to
drive the initial 120° M-O-C angle to 100° in 10° increments by moving the metal ion
relative to the dimethylether group and within the C-O-C plane.

HostDesigner Manual

36

This drive can be achieved with any of the following three drive lines:

A G -20.0 0.0 10.0 1 2 10

A G -20.0 0.0 10.0 10 2 1

A I -20.0 0.0 10.0 10 2 1

In the first two drive lines, the guest moves relative to the rest of the molecule and, as in
Example 1 above, the serial number order defining the angle does not matter. In the third
drive line, the group of atoms will be split at the 10–2 bond, the metal ion will remain
fixed, and the entire dimethyl ether group will move, yielding the desired result.

Another potential drive line using the ‘I’ designation is:

A I -20.0 0.0 10.0 1 2 10

However, this specification fails to give the desired result. In this case, the group of
atoms is split at the 1–2 bond, the methyl group containing atom 1 remains stationary,
and the remaining atoms move, yielding the set of geometries shown below.

Example 4. The user has defined a methanol-nitrate complex fragment in which the two
groups are not formally connected. The user wants to drive the initial 107° C–O–H angle
from 97 to 117° in 10° intervals.

This drive is achieved using the ‘I’ designation:

A I -10.0 10.0 10.0 3 2 1

The alternate incorrect drive line (A I -10.0 10.0 10.0 1 2 3) would split
the methanol at the 1–2 bond, fix the nitrate with the methyl group, and move the OH
group.

HostDesigner Manual

37

Example 5. The user has defined a metal-catecholate complex fragment and, keeping the
metal ion on the mirror plane, wants to move the metal ion out of the plane of the
catecholate group by 30° in 15° increments keeping the metal-oxygen distances constant.
This can be accomplished with the use of dummy atoms. Two dummy atoms are placed
on the mirror plane, the first one centered between the two oxygen atoms and the second
one 1 Å above the first dummy atom. The drive can now be specified using the angle
defined by the dummy atoms and the metal ion:

A G -30.0 0.0 15.0 14 13 15

Example 6. The user has defined a metal-dimethylether complex fragment and wants to
rotate one of the methyl groups by 30° from the starting geometry in 15° increments.

This drive is achieved using the ‘I’ designation:

D I 0.0 30.0 15.0 2 1

Because the guest is formally connected to the oxygen atom, the alternative drive line
also works in this case:

D I 0.0 30.0 15.0 1 2

HostDesigner Manual

38

Example 7. The user has defined a methanol-nitrate complex fragment in which the two
groups are not formally connected. The user wants to drive the N–O•••H–O dihedral
angle, initially at 0°, to 330° in 30° increments.

This drive is achieved with either of the following lines:

D G 0.0 330.0 30.0 3 10

D G 0.0 330.0 30.0 10 3

An Example of Input File with Drive Lines Present.
As stated above, the drive lines are appended to the bottom of the complex fragment.

There can be up to 10 different drives per structure, provided that the product of the
number of structures generated from each drive does not exceed 1000 for hosta and 100
for host b. If the drivea or driveb keyword is included in the control file, then there must
be at least one drive line present in the ‘hosta’ or ‘hostb’ file, respectively. When
geometry drives are used during a LINKER run, all geometries derived from ‘hosta’ are
pair–wise linked with all geometries derived from ‘hostb’. This operation can
significantly increase the number of structures that will be evaluated during a run (in the

HostDesigner Manual

39

extreme case there would be 1000 x 100 = 100,000 possible starting geometries).
Therefore, the run times can increase significantly when large drives are used.

The following is an example of the complex fragment file for the dimethylether
lithium complex given above (see Section 3.3), but this time with one dummy atom and
three geometry drive lines added. The first drive line varies the Li–O–C angle within the
C–O–C plane to three positions, the second drive line uses a dummy atom to move the Li
out of the C–O–C plane to three positions, and the third drive line rotates one of the
methyl groups to three positions. In this example, the product of the number of structures
generated from the drives would be 3 x 3 x 3 = 27.

Lithium dimethylether, M-O = 2.26 Å, with drives 1
 11 1 2
 C 1 -0.796860 -1.176666 -0.008575 1 2 4 5 6 3
 O 2 0.000000 0.000000 0.000000 6 1 3 10 11 4
 C 3 -0.795944 1.177567 -0.008606 1 2 7 8 9 5
 H 4 -0.092346 -2.040680 -0.009293 5 1 6
 H 5 -1.374283 -1.179657 0.945770 5 1 7
 H 6 -1.366318 -1.171310 -0.968475 5 1 8
 H 7 -1.368774 1.184189 0.948334 5 3 9
 H 8 -1.369934 1.169693 -0.965530 5 3 10
 H 9 -0.090622 2.041031 -0.015411 5 3 11
 Du 10 -0.001358 0.000351 0.972885 0 2 12
 Li 11 2.259933 0.002136 -0.007889 125 2 13
 3 14
 4 C 0 1 15
 5 C 0 1 16
 6 C 0 1 17
 D 3 18
 A G -10.0 10.0 10.0 1 2 11 19
 A G 0.0 20.0 10.0 10 2 11 20
 D I 0.0 30.0 15.0 1 2 21

When more than one drive is specified, multiple geometries are generated in a certain
sequence. The structure is driven to the first geometry specified in drive1. This
geometry is, in turn, used as input to generate the first geometry from drive2. This
geometry is, in turn, used as input to generate all geometries from drive3. Then, drive2 is
incremented, still using the first geometry from drive1. All geometries are again made
from drive3. And so on. Once drive2 and drive3 have been completed, drive1 is
incremented and the process starts over. Therefore, when the drives are not linearly
independent, different ordering of the drive lines may yield different results. This is true
in the above example as both the first and second drive will alter the Li–O–C angles.

Because the results from a series of dependent drives may not be obvious, we have
provided a facility for the user to view all the geometries that are produced. When the
keyword testdrive, is included in the control file, HostDesigner will generate all the
geometries and the results are written to files named ‘string_testa.hdo’ and/or
‘string_testb.hdo’, where ‘string’ is defined by the out=string keyword (see Section 3.2).

HostDesigner Manual

40

3.6 Description of the Output Files.
In either mode of operation, LINKER or OVERLAY, the code will write three output

files with suffixes appended to a root name specified in the control file using the
out=string keyword.

One of these files, ‘string.summ’ provides a summary that tells the user how many
links were examined, how many structures were built, how many structures were
retained, and timings for various aspects of the run. It also reproduces the control file and
prints the title line from each of ‘hosta’ and ‘hostb’ files.

The other two files, ‘string_1.hdo’ and ‘string_2.hdo’, contain lists of Cartesian
coordinates for the host structures that were generated. The number of structures that
will be written to these files is controlled using the numview=# keyword. During code
operation, the best hits, in other words those with the lowest RMSD values, are stored in
memory. At the end of the run, these hits are written to the ‘string_1.hdo’ file in
ascending RMSD order. Next, the hits are sorted by conformational energy and written
to the ‘string_2.hdo’ file in ascending conformational energy order. Because the number
of structures stored in memory may be larger than the number to be written, each of these
two output files may have structures that are not found in the other one.

These output files can be viewed using the HDViewer utility provided with the
download. Alternatively, the files can be viewed using molecule viewers such as XMOL
or MOLDEN. The format for a single structure entry in these files is illustrated in the
example shown on the next page.

It is recommended that if the user is applying the geometry drives, the input should be
checked to ensure that the drives are working as the user intended. When the testdrive
keyword is used, the normal sequence of the program is not followed. Instead one or two
files, named ‘string_testa.hdo’ and/or ‘string_testb.hdo’ are generated. These contain all
the geometries generated for ‘hosta’ and/or or ‘hostb’, respectively. The series of
structures in these files is presented with the same format used in the normal output files
and can be viewed in the same fashion.

HostDesigner Manual

41

Example of the format used to output structures:

35 1
____6:RMSD=0.136,nrot=2,E=_2.740_1,4-dimethylcyclopentene____(_1345) 2
O 1.98381 -2.02329 0.13148 6 2 3 9 3
C 3.15826 -2.82259 0.08920 1 1 6 7 8 4
C 2.22468 -0.70451 -0.34001 1 1 4 5 14 5
H 2.96202 -0.24349 0.35979 5 3 6
H 2.50580 -0.79508 -1.41560 5 3 7
H 3.43840 -2.92407 -0.98552 5 2 8
H 3.89350 -2.34908 0.78240 5 2 9
H 2.87769 -3.82542 0.48744 5 2 10
Li -0.01549 -2.75385 0.89081 125 1 11
C 0.32271 0.08025 1.17579 2 11 14 15 12
C -1.00559 -0.11144 1.15647 2 10 12 17 13
C -1.53869 -0.29679 -0.25611 1 11 13 18 29 14
C -0.23692 -0.66577 -1.02003 1 12 14 16 19 15
C 0.90242 0.04721 -0.23397 1 10 13 20 3 16
C 1.17243 0.41142 2.38449 1 10 21 22 23 17
C -0.27863 -0.29612 -2.50876 1 13 24 25 26 18
H -1.66350 -0.07697 2.04065 5 11 19
H -1.94617 0.67681 -0.61595 5 12 20
H -0.08317 -1.76739 -0.93062 5 13 21
H 1.02800 1.09574 -0.59191 5 14 22
H 1.67370 1.39668 2.26012 5 15 23
H 1.96094 -0.35649 2.54427 5 15 24
H 0.56180 0.45976 3.31323 5 15 25
H -0.42879 0.79659 -2.65666 5 16 26
H 0.66687 -0.57415 -3.02538 5 16 27
H -1.10741 -0.81934 -3.03562 5 16 28
O -2.01160 -2.58156 0.12612 6 28 29 35 29
C -2.92389 -3.67101 0.09727 1 27 32 33 34 30
C -2.60666 -1.38112 -0.34752 1 27 30 31 12 31
H -3.43620 -1.13461 0.35748 5 29 32
H -2.86095 -1.55103 -1.42019 5 29 33
H -3.17425 -3.85114 -0.97449 5 28 34
H -3.75487 -3.41194 0.79560 5 28 35
H -2.37736 -4.55707 0.49624 5 28 36
Li 0.11710 -2.73502 0.86950 125 27 37

Line 1: An integer, n, giving the number of atoms in the structure.

Line 2: A string reporting the serial number, the RMSD of the hit, the number of
rotatable bonds, the estimate of the conformer energy, the source of the link, and finally
the serial number of the link from the library. When the file comes from a LINKER run,
the RMSD refers to the guest-guest distance. When the file comes from an OVERLAY
run, the RMSD refers to the superposition of the bonding vectors.

Lines 3 to 2+n: Each line describes an atom in the structure with the atom label and the x,
y, and z coordinates of that atom, the atom type, and a connectivity list.

HostDesigner Manual

42

4.0 HOW TO CITE HOSTDESIGNER IN THE LITERATURE

In publishing results obtained either in part of in full from use of HostDesigner, the
user should use the following citation:

Citation:

(a) Hay, B.P.; Firman, T.K. “HostDesigner: a program for the de novo structure-based
design of molecular receptors with binding sites that complement metal ion guests.”

Inorg. Chem. 2002, 41, 5502-5512. (b) HostDesigner is available at no charge from the
following website: http://hostdesigner.emsl.pnl.gov.

